Selective Inference and Learning Mixed Graphical Models

نویسنده

  • Jason D. Lee
چکیده

This thesis studies two problems in modern statistics. First, we study selective inference, or inference for hypothesis that are chosen after looking at the data. The motiving application is inference for regression coefficients selected by the lasso. We present the Condition-onSelection method that allows for valid selective inference, and study its application to the lasso, and several other selection algorithms. In the second part, we consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our approach is a natural generalization of these two lines of work to the mixed case. The penalization scheme involves a novel symmetric use of the group-lasso norm and follows naturally from a particular parametrization of the model. We provide conditions under which our estimator is model selection consistent in the high-dimensional regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models

Directed acyclic graphs (DAGs) have been widely used as a representation of conditional independence in machine learning and statistics. Moreover, hidden or latent variables are often an important component of graphical models. However, DAG models suffer from an important limitation: the family of DAGs is not closed under marginalization of hidden variables. This means that in general we cannot...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Exact inference and learning for cumulative distribution functions on loopy graphs

Abstract Many problem domains including climatology and epidemiology require models that can capture both heavy-tailed statistics and local dependencies. Specifying such distributions using graphical models for probability density functions (PDFs) generally lead to intractable inference and learning. Cumulative distribution networks (CDNs) provide a means to tractably specify multivariate heavy...

متن کامل

Learning with Joint Inference and Latent Linguistic Structure in Graphical Models

LEARNING WITH JOINT INFERENCE AND LATENT LINGUISTIC STRUCTURE IN GRAPHICAL MODELS

متن کامل

Symbolic Variable Elimination for Discrete and Continuous Graphical Models

Probabilistic reasoning in the real-world often requires inference in continuous variable graphical models, yet there are few methods for exact, closed-form inference when joint distributions are non-Gaussian. To address this inferential deficit, we introduce SVE – a symbolic extension of the well-known variable elimination algorithm to perform exact inference in an expressive class of mixed di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.00039  شماره 

صفحات  -

تاریخ انتشار 2015